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The stability of short-wave displacement perturbations on a vortex filament of 
constant vorticity in a weak externally imposed strain field is considered. The 
circular cross-section of the vortex filament in this straining flow field becomes 
elliptical. It is found that instability of short waves on this strained vortex can 
occur only for wavelengths and frequencies a t  the intersection points of the dis- 
persion curves for an isolated vortex. Numerical results show that the vortex is 
stable at some of these points and unstable at others. The vortex is unstable at 
wavelengths for which o = 0, thus giving some support to the instability mechan- 
ism for the vortex ring proposed recently by Widnall, Bliss & Tsai (1974). The 
growth rate is calculated by linear stability theory. The previous work of Crow 
(1970) and Moore & Saffman (1971) dealing with long-wave instabilities is dis- 
cussed as is the very recent work of Moore & Saffman (1975). 

1. Introduction 
In  recent years, there has been a renewed interest in the behaviour of flows 

with concentrated vorticity, in particular in the stability of various codgura- 
tions of vortex filaments: vortex pairs, vortex rings and isolated vortex filaments. 
The recent review by Widnall(l975) discusses a number of these problems. The 
present work is motivated by the work of Widnall et al. (l974), who proposed a 
simple model for the instability of a vortex ring suggesting that instability would 
occur on the vortex ring at wavelengths for which the waves on a corresponding 
straight filament would not rotate (w = 0). The present paper analyses the more 
tractable but related problem of the stability of short waves on a vortex filament 
in a flow field with strain. The physical model presented in Widnall et al. (1974) 
implies that the straight filament would also be unstable under these conditions. 

Thompson (1880) investigated the vibration of an isolated columnar vortex 
with solid-body rotation surrounded by an irrotational revolving flow and showed 
that it is stable to all infinitesimal disturbances, which merely rotate around the 
filament. Crow (1970) analysed the stability of a pair of trailing vortices to long- 
wave displacement perturbations by considering the mutual interaction of a pair 
of sinusoidally perturbed vortex lines: the Biot-Savart law was used to calculate 
the velocity induced at  each vortex by the presence and deformation of the other 
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vortex and the ‘cut-off’ method was used to calculate the self-induced motion 
of the perturbed vortex itself. In  a co-ordinate system fixed to one of the vortices 
in an undisturbed descending vortex pair, a strain field is produced by the other 
vortex. Instability occurs for long waves when the self-induced rotation rate 
becomes small and the displacement perturbations diverge in the strain field. 
Widnall, Bliss & Zalay (1971) first determined the effect of vortex-core structure 
on the self-induced rotation of a thin curved vortex filament; the general solution 
found by them was then applied to study the stability of a vortex pair. Both of 
these analyses showed that there are two groups of unstable waves: long waves, 
for which the maximum non-dimensional amplification rate [E = a/( r/2d2)] is 
0.8, and short waves, for whichEis 1. Theshort-wave instabilityoccurs at a wave- 
length for which the long-wave self-induction theory incorrectly predicts w = 0. 

Recently, Widnall et al. (1974) have re-examined the existence of short waves 
on straight filaments in connexion with study of a short-wave instability of the 
vortex ring and concluded that this prediction of short-wave instability is 
spurious (unless a strong axial velocity exists in the core) but that short-wave 
instabilities having a more complex radial structure can exist. (See also Widnall 
1975.) A more complete analysis of the dispersion relation for waves on straight 
filaments without a long-wave assumption showed that the higher-order radial 
modes of bending the filament have the property that for some wavenumber the 
self-induced rotation rate goes to zero. They postulated that it is these modes 
having w close to zero that diverge in the straining flow field. Results of a calcula- 
tion based upon this simple model of second-radial-mode instability showed good 
agreement with the experimentally obtained wavenumbers for unstabIe vortex 
rings. 

However, a complete anaIysis of this instability for either the ring or the line 
filament requires that small perturbations of the actual steady flow be considered. 
For the straight filament considered here, the cross-section of the region of 
constant vorticity in a straining flow becomes an ellipse; the velocity field is no 
longer purely tangential. Moore & Saffman (1971) examined the stability of this 
vortex in two special cases : two-dimensional disturbances and long-wave dis- 
turbances. They showed that this flow is always unstable to displacement per- 
turbations which areindependent of the axial co-ordinate; the growth rate is equal 
to the rate of strain. For long-wave disturbances, three-dimensional effects re- 
duce the growth rate of the instability, confirming the long-wave analysis of 
Crow (1970). During revision of this paper, a paper with the title “The instability 
of a straight vortex filament in a strain field”, by Moore & Saffman (1975), was 
submitted for publication. In  this, they establish that a vortex would be unstable 
in the presence of strain if it could support non-rotating waves, but no specific 
solutions or numerical results are presented. 

In  order to complete the stability theory for the vortex line and to give support 
to the instability mechanism for the vortex ring proposed by Widnall et al. 
(1974), we have investigated the stability of short bending waves on a vortex 
filament of constant vorticity with finite core size in a weak straining flow field 
defined by the small parameter .s = 4e/Q, where e is the rate of strain and Q is the 
vorticity inside the core. 
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2. Formulation of the problem 
We formulate the problem by expanding both the steady and unsteady flow 

solution in the small strain parameter E (tjZ), then introduce three-dimensional 
disturbances along the axial direction, derive a solvability condition required for 
instability and present some numerical results ($3).  

The asymptotic steady-flow solution for the structure of a line vortex with a 
circular cross-section in a weak straining flow field can be obtained by expanding 
the solution as a power series in 6 and imposing kinematic and dynamic matching 
conditions expanded in powers of e a t  the edge of the vortex core or by directly 
expanding the exact solution obtained by Moore & Saffman (1971). The result is 

(2.1) I V(r ,8)  = r-erccos26+0(~2), 
U(r ,  8) = - er sin 28 + O(e2), 

P(r, 6 )  = Br2 - 1 + O(e2),  
@(r, 8)  = 8 + $e(r-2 - r2) sin28 + 0(e2), R(8,e) < r < CO, 

0 < r < R(8,e), i 
where R(8,e) denotes the boundary of the vortex core: 

R(8, B) = 1 + $-E cos 28 + O(8) .  

U ,  V ,  P and CD are the radial velocity, tangential velocity and pressure inside 
the vortex core and the velocity potential outside the vortex core, normalized as 
follows: the velocities by &la, pressure by $pQ2a2 and velocity potential by 
4Qa2; a is the radius of the vortex core. 

We subject this basic flow field to small perturbations (denoted by tildes) and 
linearize the equations of motion to obtain governing equations for the distur- 
bance quantities: for the flow inside the vortex, 

ac ac au vac iau, 2 v c  - iaP  -++-+-c+--++-@--=-- 
at ar ar r ae r ae r p ar’ 

aij aa av vac iav ui~+v.ii -1 iaP -+u-+-.ii+--+--ij+ = --- 
at ar ar r a8 r a8 p rae’  

aiz aiz vaiz iaP -+u-+ --=--- 
at ar r ae p az’ 
ac c i aa ad - +; +;F6 + - = 0; ar az 

I (2.2a) 

1 
for the flow outside the vortex, 

v2q5 = 0. 

The boundary conditions are as follows: 
(i) As r + 00 the disturbances decay. 
(ii) At r = 0 the solution is non-singular. 
(iii) The kinematic boundary condition at r = R(6, E )  +c@(t,e,z) is 

D(r - R - 8 P ) / ~ t  = 0, 

where Sp is the displacement of the edge of the core. 

(2.2b) 
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(iv) The dynamic boundary condition is that the pressure is continuous at 

r = R(0, E )  + Sp(t, 8 , ~ ) .  

After linearization, the kinematic boundary condition becomes 

+------ i aRa$ a$ - 0 at r = R, ( 2 . 3 ~ )  
RW ae ar 

at r = R  (2.3b)  
aP vaP 1 d R a V  1 dR 

li%Z-@de - + 3% + P (  at 

and the dynamic boundary condition becomes 

U, V ,  P ,  @ and R [from (2 .1)]  are then substituted into the above equations and 
perturbation quantities are expanded in E ,  the strain parameter, in the form 

(2; 8;  G; P/p;  $; P )  = (Go +€GI + . . . ; Go+ €81 + . . .; $0 +€el + .. .; 
if, + ejil + . . . ; $, + + . . . ; Po + EP' + . . . ) eot+ikz, 

where k is the wavenumber along the z axis. 
The eigenvalue w is expanded as 

w = w,+Ewl+€26J,+ ... . 

If w, is real and positive, the flow is unstable. To investigate the stability in the 
neighbourhood of w = wo, the wavenumber k is also expanded: 

k = ki + &, 

where k, is a solution to the dispersion relation for w = w,. 

3. Stability analysis 
We consider disturbances along the axial direction of wavelength comparable 

to the core size of the vortex, i.e. ku = O(1):  the disturbed flow is totally three- 
dimensional. The equations (2 .2)  governing the flow separate to different orders 
in the strain parameter E as follows. 
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To zeroth order, we have 

ia3 
ae r ae for r < 1, 

aiz, 
ae ooizo+ - -2z0+ = 0, 

w0v"0+2iz0+ - + - 0  = 0, 

and the boundary conditions at r = 1 are 

a$o/ar - u0 = 0, 

ii, + w0 $o + a$,/ae = 0. 

To first order, we have 

(3.3a) 

(3.3b) 

I 
V W  UI I 

I aiz, ( z -0 )  ae + r 0  +u sin28 + - c o s ~ ~ ,  

i 
- V V 1  & " , a 1  

,v",+2u1+ - +-- = - q a 0  ae r ae 
for r < 1, (3.4) 

a$, 
ae 

k - +-- +ikiG, = -i&wo, 

+ - cos 28 - iho, 

s, iaa, 
r r a8 

aiz, 
----I 
ar 

I 

and the boundary conditions a t  r = 1 are 
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The zeroth-order problem is of course that for waves on a straight filament; 
solution of (3.1) and (3.2) with the application of the boundary conditions (3.3) 
will determine w0, the zeroth-order frequency. Note that the first-order problem 
(3.4)-(3.6) is a forced problem whose homogeneous solution is identical to the 
zeroth-order solution with the zeroth-order eigenvalue wo already determined; 
the unknown w1 that appears in the forcing terms is then determined by solva- 
bility conditions governing the forced eigenvalue problem. 

Zeroth-order disturbances are assumed in the form 

The solution to this problem leads to the well-known dispersion relation for waves 
on an isolated straight vortex filament (e.g. Moore & Saffman 1971). We outline 
the procedure in some detail to highlight the solution for a vortex filament in the 
presence of strain. Substituting the assumed disturbances (3.7) into the set of 
equations (3.1) and equating the coefficients of eie and e-ie, we obtain two sets of 
equations of motion. By manipulation, these can be reduced to two simultaneous 
ordinary differential equations governing only the pressure; these two equations 
can be written as 

where the operators are 
LIDO = 0, L2B0 = 0, (3.8) 

d2 l d  1 
L,=@+------q,, rdr r2 

with 

7; = - @((do + i) (Wo - 3i)/(W0 - i)'. 

The solution to (3.8) for the pressure is then 

Do = Jl(rlr)Po, Do = Jl(72T) Po, (3.9) 

where we have required that the solution is non-singular at r = 0; Po and Po 
are arbitrary constants. The velocity components can be found from the pressure. 

From (3.2) and (3.7) the velocity potential outside the vortex is given by 

Eo = K, (~$T)CX, ,  Eo = Kl(kir)Zo,  (3.10) 

where K ,  is a modified Bessel function. 
The homogeneous boundary conditions (3.3 a) and (3.3 b )  at r = 1 become 

(3.11 a) 

(3.11 b )  
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where 

do = 1 - (o0 + i) Y ~ J ~ ( T ~ )  + (ao - i) ~ ~ ( ~ ~ ) i i w ~  - i) (-wo + 3i)i, 

do = [ - (oo - i) T ~ J ~ ( T ~ )  + (ao + i) ~ ~ ( 7 ~ ) i l [ ( w ~  + i) (wo - 341. 

The existence of a non-trivial solution (ao, Po) and/or (Eo, Po) of (3.11 a)  and/or 
(3.11 b )  requires that the determinants of (3.11 a)  and/or (3.11 b) ,  denoted by 
a(oo, ki) and b(wo, ki) ,  equal zero; wo and ki values satisfying these zeroth-order 
dispersion relations are shown in figure 1. From (3.11) and (3.12), we obtain 

ki) ( w O + i ) K 1 ~ O + k i K ; J l ( r l ) ,  

b(wo, kf ) = (oo - i) K 1 d o  + ki K; J1(r2). 

Note that a(@,, ki) = b( -wo,  hi). Thus, from (3.11) and (3.12), the eigenmode 
is given by 

a - -Po d 0  and/or Eo = -Po. 2 0  
O - kiKl Wl 

(3.12) 

If (wo, ki) are such that a(@,, ki) = 0 but b(wo, ki) # 0, then Po = 0; if (wo, ki) are 
such that b(oo, ki) = 0 but a(wo7 ki) # 0, then Po = 0; if (wo, ki) are such that 
a(w,, hi) = 0 and b(w,, ki) = 0 simultaneously, then Po and Po are arbitrary: 
two eigenmodes of the same wavelength and equal and opposite frequencies can 
exist simultaneously. These (wo, ki) points will be shown to have special signifi- 
cance for a vortex in the presence of strain. 

To find the effect of strain on the dispersion equation, we proceed to the next 
order: to wl. Since the presence of strain changes the basic flow as given in (2.1), 
the disturbances to the next order are assumed to be of the form 

(3.13) 

By almost the same procedure as led to (3.8), we reduce (3.4) to two inhomogen- 
eous simultaneous ordinary differential equations containing the pressure : 

The inhomogeneous terms in (3.14) are found by substituting the zeroth-order 
solution into (3.4). 



728 C.- Y .  Tsai and 8. E. Widnall 

FIUTJRE 1. Curves of the dispersion relation for waves on a straight vortex filament. 
-, a(o,, ki )  = 0; - - -, b(w,,, kJ = 0. Crossing points indicate regions of possible instability 
to the presence of strain; 0 ,  w1 positive and real, flow unstable; + , w1 imaginary, flow 
stable. 

By standard methods, the solution to (3.14) for the first-order disturbance 

Dl, = J1(nr)P,  + ( ~ l ~ l + k i ~ H , ) P L l + ~ 3 P O a , ,  ( 3.1 5 a) 

a 1  = J l ( W ) P I +  (w14 + ~ d ~ ~ J P O + H 3 P O .  (3.15b) 

We have required the solution to be non-singular at r = 0 and P1 and Pl are 
arbitrary constants. The terms introduced in (3.15) are defined in appendix A. 
The disturbance velocity field can be calculated from the solution for the distur- 
bance pressure field. 

Applying the boundary conditions (3.6) at T = 1 , we have, after a lengthy but 

pressure is 
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straightforward calculation, an inhomogeneous version of (3.11) : 

(3.16 a )  

(3.166) 

where the inhomogeneous terms 4, Fl, F, and F2 are functions of w,, wo, ki and 
of arbitrary coefficients Po and Po; these functions are written out in appendix B. 

Solvabilitywhen the determinant of ( 3 . 1 6 ~ )  and/or (3.16b) is zero requires that 
the forcing terms be orthogonal to the solution of the adjoint problem. This 
requirement leads to the following conclusion. 

If (wo, ki) are such that only a(wo, ki) = 0, then w, can be directly determined 
from the orthogonality condition ki KiF2 - (wo + i) K ,  4 = 0;  also Po = 0. If 
(wo, ki) are such that only b(wo, ki) = 0, orthogonality requires 

k,K~P2-(w,-i)KlFl = 0; 

also p =  0. For these two cases, w1 can be found by inspection to be purely 
imaginary. 

If (ao, kJ are such that a(wo, ki) = 0 and b(wo, ki) = 0 simultaneously, then we 

(3.17) 
have 

Equation (3.17) can be rewritten using the expressions for the 3’s of appendix B 

(3.18) 

For (3.18) to have a non-trivial solution, its determinant must equal zero; this 

(3.19) 

~ , K ; ~ ’ , - ( U , + ~ ) K , F ~  = 0, k iKiFz - (~o- i )KIFl  = 0. 

&S 
[w1 f + ki ig]  po + hpo = 0, zpo + [wJ+ ki l g ]  po = 0, 

where the expressions for f, g ,  h, f, S and E appear in appendix C. 

requires 

which determines w1 as 

f fw;  + ki k(jg +fg) w1 + h$ &2gg - hz = 0, 

w1 = { - ki L ( f i  + g f )  i- [k? &“fi + gT), - 4ff(k$ &2gg - hX)]+}/2,ff. (3.20) 

The growth rate is given by the real part of wl. Inspection of (3.20) and the numeri- 
cal results presented below shows that the vortex is unstable at many but not all 
of these (wo, ki) points. Thus instability can, but does not necessarily, occur for 
(wo, ki) combinations for which a(@,, ki) and b(wo, ki) are simultaneously zero. 
Moore & Saffman have also obtained this condition but did not obtain results for 
a specific case. 

The physical explanation for the instability is that this condition, 

a(wo,ki)  = 0 and b(oo,ki)  = 0 

simultaneously, identifies two eigenmodes of the same wavenumber and equal 
but opposite frequencies, which can produce an oscillatory standing wave on 
the line vortex. Since this wave maintains a constant angular orientation, it can 
divergeinaflowwithstrain. At theintersectionpoints, i.e. & = 0, we have the maxi- 

~f = hZ/ff. mum amplification rate 
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Numerical results for several points are 

w1 = 0.57 at w o =  0, ki = 2.5, 
w1 = 0.0236 at wo = f 0.5, kj = 1.6, 
w1 = 0.0041 at wo = k 0.405, ki = 1-27, 
w1 = 0.021i a t  wo = f0-191, ki = 3.24, 
w1 = 0-023i at w,, = kO.135, ki = 5.25. 

Therefore the instability exists at  several such points including wo = 0;  this gives 
some support to the simple condition of instability w = 0 for some k, postulated 
by Widnall et al. (1974). These points of possible instability are determined by 
the crossings of the curves of the dispersion relations, shown in figure 1. Note 
that, from numerical calculations, w1 is imaginary at some of these crossing 
points: the flow is stable to these disturbances. In  the simple analysis of Widnall 
et al. (1974) the amplification rate was unity; the present more complete analysis 
gives 1.14 under the same condition. The previous model was, of course, only a 
heuristic explanation and not a full three-dimensional analysis. 

The flow is unstable in a small band of wavenumbers Ik - kil = E& around an 
unstable crossing point (wo, ki). In  general, for wo # 0, it  can be shown that w1 
is positive real as long as 

(3.21) 

For the case wo = 0, we have f i j  +$g = 0, and $ = -f (purely imaginary), g = g 
(real) and h = % (real); then 

is a real number indicating the rate of growth. 

obtain w: = 3, in agreement with the results of Moore & Saffman (1971). 

4ffhE 
Ez < 

k34ffm - (.fg +fd21' 

W: = h2/f2 

In  the limiting case wo = 0, ki -+ 0, then kig = 0, h = 943  and f = 43 ,  so that we 

For wo = 0, w: > 0 whenever 

Some numerical values for the width ,$ of the region of instability are 

A \ E l  < k = h/kig.  

A 

qmax = 0.5708, k < 2.14 at wo = 0,  k, = 2.5, 

wlmax = 0.004, I% < 0.012 at wo = & 0.4, ki = 1.27, 
wlmax = 0.024, f < 0.092 at wo = 0.5, k, = 1.6. 

In  dimensional form, the amplification rate a of the instability for the case 

wlmax = 0.5695, ,$ < 3.5 a t  wo = 0, k, = 4.35, 

o,=Ois 
(3.22) 

The width f of the zone of instability and the maximum rate of amplification are 
proportional to the ratio of the rate of strain e to the vorticity. The numerical 
results obtained indicate that both the amplification rate and the width of the 
unstable region are much larger at  wo = 0 than at the crossing points with wo # 0. 

The extension of the analysis to the vortex ring remains to be done. 

This work was supported by AFOSR under Contract F44620-69-C-0009. 
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Appendix A. Definition of functions introduced in (3.15) 
The functions Hi and .@ are as follows: 

where Jo and J1 are Bessel functions, Yl is a modified Bessel function and 



Appendix C. Definitions of functions introduced in (3.18) 
The functions in (3.18) evaluated a t  r = 1 are as follows: 

f - doKl(ki)  - kiKi(ki) HI - ( ~ 0  + i) K,(ki) A , ,  

- ki Ki( ki)  R2 - (wo - i )  K,(k+) B,, 
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